

an introduction to

Temporal Action Segmentation

Angela Yao 24.10.2022

Table of Contents

I.Task

Forms of Supervision

Evaluation Measures

Definition

Datasets

2. Core Techniques

• Frame-wise

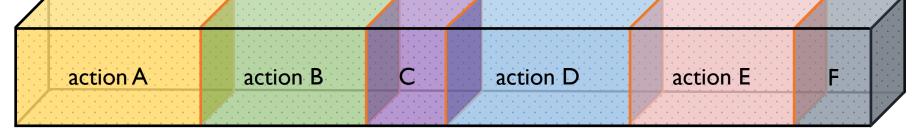
Representation

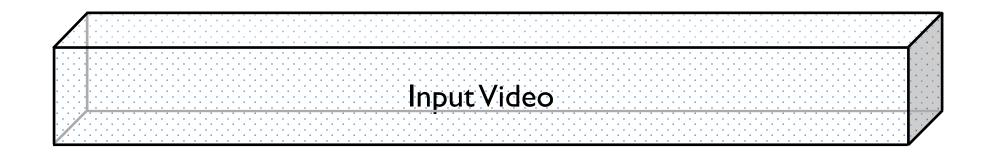
- Temporal Modelling
- Sequential Modelling

3. SoTA Trends

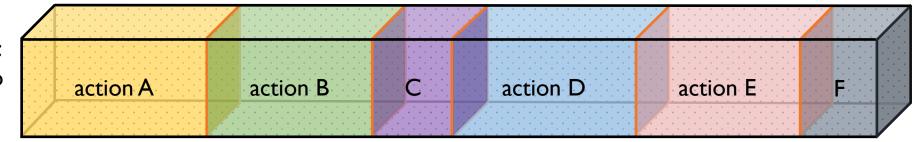
- Fully Supervised
- Weakly-Supervised
- Unsupervised
- Semi-Supervised

Temporal Segmentation: Assign an action label to each frame of the video



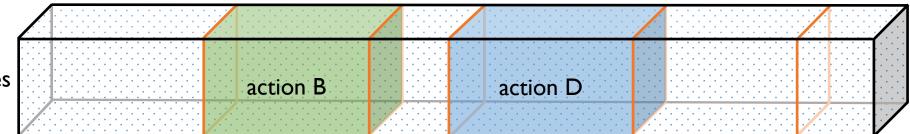


<u>Temporal Segmentation</u>: Assign an action label to each frame of the video



Segmentation vs. Detection in Time

<u>Temporal Localization</u>: Find temporal boundaries of specific action classes



Temporal Action Segmentation Datasets

Breakfast Actions

50 Salads

GeorgiaTech Egocentric Activities

Dataset	Year	Duration	# Videos	# Segments	# Activity	# Action	Domain	View
GTEA	'11	0.4h	28	0.5K	7	71	cooking	egocentric
50Salads	'13	5.5h	50	0.9K	1	17	cooking	top-view
Breakfast	'14	77h	1712	11K	10	48	cooking	3rd person
* moving out of the kitchen domain								

* richness in temporal variation

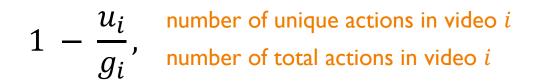
New Dataset – Assembly 101

Disassembly

Assembly

Dataset	total	#	avg. video	#
Dataset	hours	videos	length (min)	segments
50Salads [47]	4.5	50	6.4	899
Breakfast [22]	77.0	1,712	2.3	11,300
Assembly101	513.0	4,321	7.1	104,759

Repetition score:



for video
$$i \ u_i = 4, g_i \rightarrow 7$$

Repetition score = $1 - \frac{4}{7} = 0.42$

for video $i \ u_i = 7, g_i \rightarrow 7$ Repetition score = $1 - \frac{7}{7} = 0$

Repetition score ranges between [0,1)

- 0 indicates no repetition
- Closer to 1 indicates more repetitions

Order variation score:

$$1 - \frac{e(R,G)}{\max(|R|,|G|)}$$

Average edit distance e(R,G) between every pair of sequences R and G, normalized w.r.t. the maximum sequence length of R and G.

G

for video *i*, e(R, G) = 11 $-\frac{1}{5} = 0.8$

R
G
for video
$$i, e(R, G) = 1$$

 $1 - \frac{5}{5} = 0$

Repetation score range [0,1]

- $1 \rightarrow$ strict ordering
- closer to $0 \rightarrow$ more deviation in action order

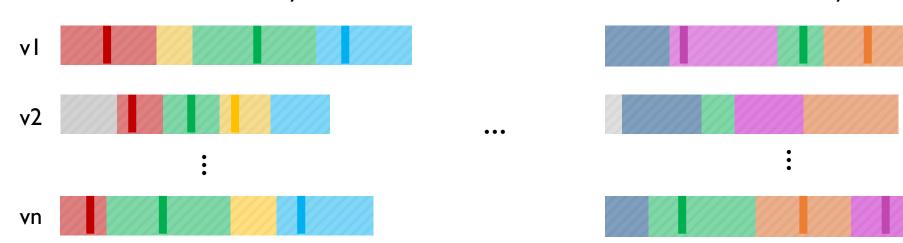
0.11	
	0.15
0.08	0.02
0.18	0.05

High score of order variation indicates that actions follow a strict ordering.

A challenging benchmark for modelling the temporal relations between actions.

Procedural Activity M

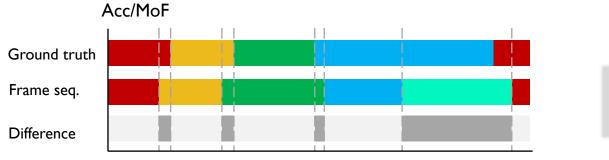
- "Unsupervised" = Activity-Level Supervision: procedural activity label
- Fully supervised: labels of every frame in every video
- Semi supervised: labels of every frame in some videos
- Weakly supervised: transcripts, action sets, labels of some frames



Procedural Activity 1

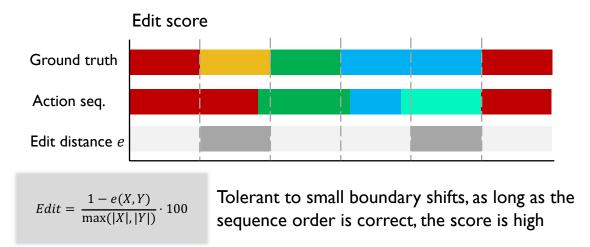
Evaluation Measures

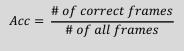
Frame-based

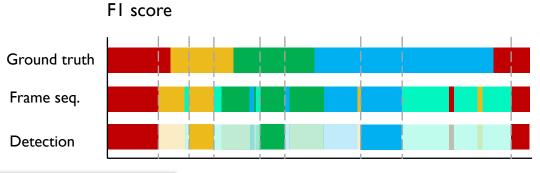


Estimates how accurate frame wise predictions are.

Segment-based





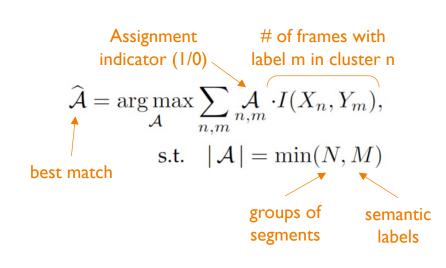


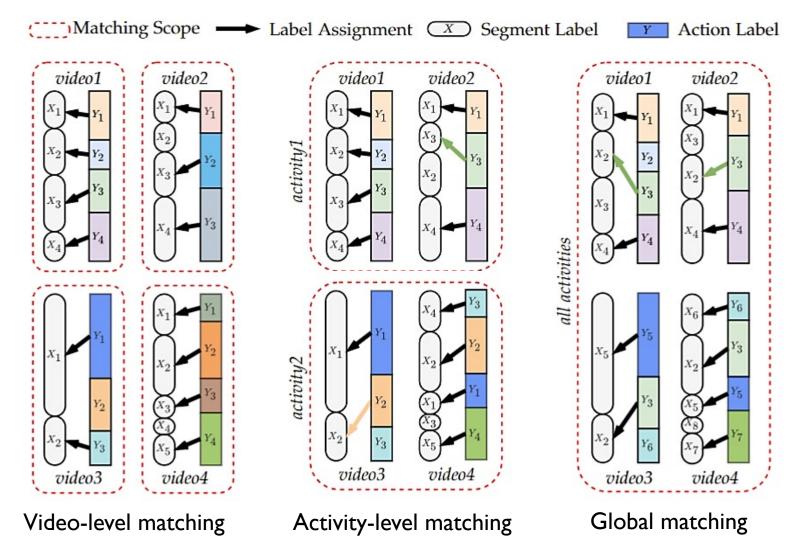
 $F1 = 2 \cdot \frac{precision * recall}{precision + recall}$

True positives marked by dashed line have an IOU with ground truth based on threshold τ . Remaining segments (dimmed) are false positives

Hungarian Matching in Unsupervised TAS

- Unsupervised segmentation results: segments are grouped wrt each other, groups must be assigned to action label for evaluation
- Assignment via Hungarian matching





NUS Computing

I.Task

- Definition
- Datasets
- Forms of Supervision
- Evaluation Measures

2. Core Techniques

- Frame-wise
 - Representation
- Temporal Modelling
- Sequential Modelling

3. SoTA Trends

- Fully Supervised
- Weakly-Supervised
- Unsupervised
- Semi-Supervised

Action segmentation uses pre-computed video features as input:

- IDT: Improved Dense Trajectories[a]
 - Raw features encoded by Fisher Vectors [b] to capture 1st & 2nd order statistics
 - Reduced to 64D by PCA
- I3D: Inflated 3D ConvNet [c]
 - 2048D: concatenate RGB stream (1024D) + optical flow stream (1024D)

[a] Wang and Schmid, ICCV'13[b] Perronnin et al, ECCV'10[c] Carreira and Zisserman, CVPR'17

Framewise Representations: Additional Learning

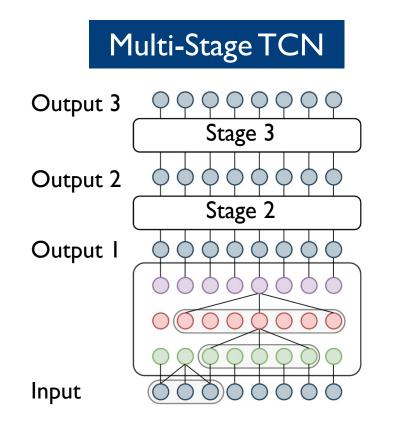
- Discriminative clustering [a]
- Unsupervised contrastive learning [b]
 - Positive pairs based on K-means clustering & time threshold
- Temporal & Visual Embedding
 - same actions tend to occur in a similar temporal range
 - embedding learned w/ pretext task of frame-wise timestamp prediction to [c]
 - temporal embedding augmented to include visual cues [d]

[a] Sener and Yao, CVPR'18
[b] Singhania et al, AAAI'22
[c] Kukleva et al, CVPR'19
[d] VidalMata et al, WACV'21

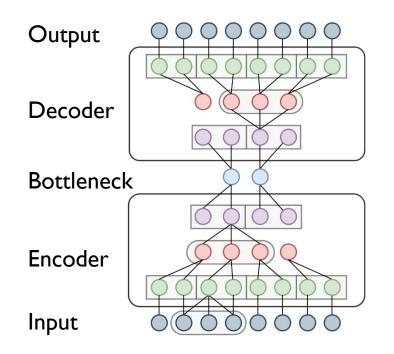
Temporal Modelling

- Recurrent Neural Networks (RNNs)
 - Bi-directional GRUs [a], [b]
- Temporal Convolutional Networks (TCNs)
 - Encoder-Decoder [c],[d]
 - Multi-stage TCNs [e],[f]
- Attention & Transformer Architectures
 - Temporal Aggregates [g]
 - ASFormer[h]
 - UVAST[i]

[a] Singh et al, CVPR'16
[b] Richard et al, CVPR'17
[c] Lea et al, CVPR'17
[d] Lei et al, CVPR'18
[e] Farha et al, CVPR '19
[f] Singhania et al, arxiv'21
[g] Sener et al, ECCV'20
[h] Yi et al, BMVC'21
[i] Behrmann, ECCV'22

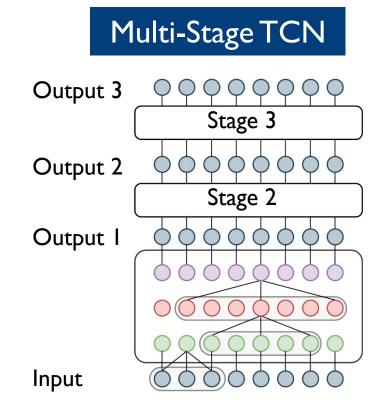


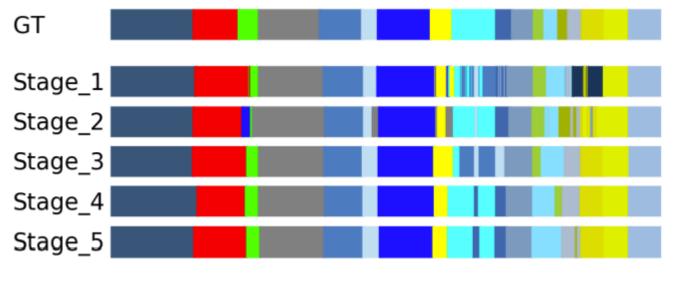
Encoder-Decoder TCN



- Fixed temporal resolution vs. shrink-then-expand
- Successive probability refinement vs. decoupled representation + classification

MS-TCN

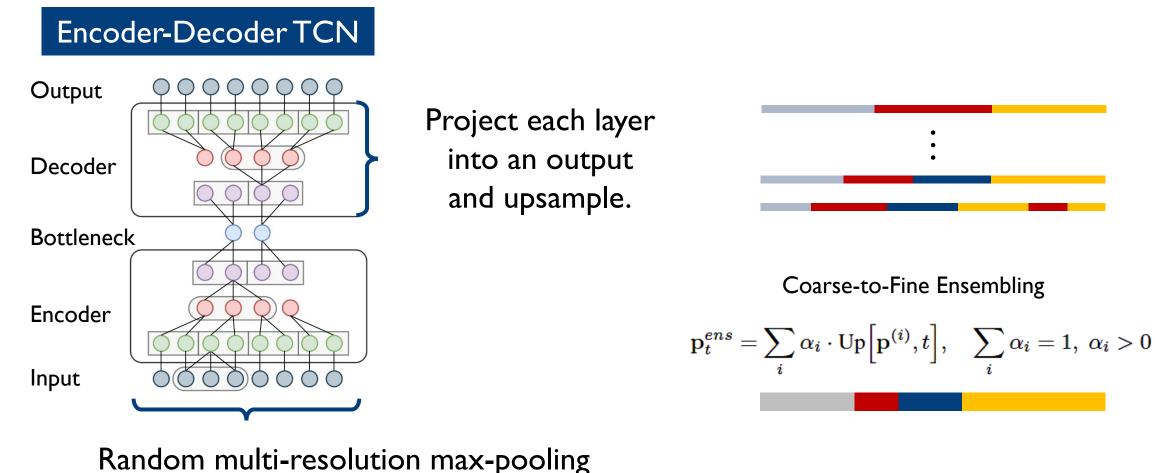




	F1@	{10,25	,50}	Edit	Acc
MS-TCN (2 stages)	55.5	52.9	47.3	47.9	79.8
MS-TCN (3 stages)	71.5	68.6	61.1	64.0	78.6
MS-TCN (4 stages)	76.3	74.0	64.5	67.9	80.7
MS-TCN (5 stages)	76.4	73.4	63.6	69.2	79.5

Effect of the number of stages on the 50Salads dataset.

Yazan Abu, and Gall. Ms-tcn: Multi-stage temporal convolutional network for action segmentation CVPR, 2019. Intro to Action Segmentation, ATLAS Tutorial @ ECCV



as a feature augmentation strategy

Singhania, Rahaman & Yao. Coarse-to-fine multi-resolution temporal convolution network. *arXiv:2105.10859*, 2021. Intro to Action Segmentation, ATLAS Tutorial @ ECCV

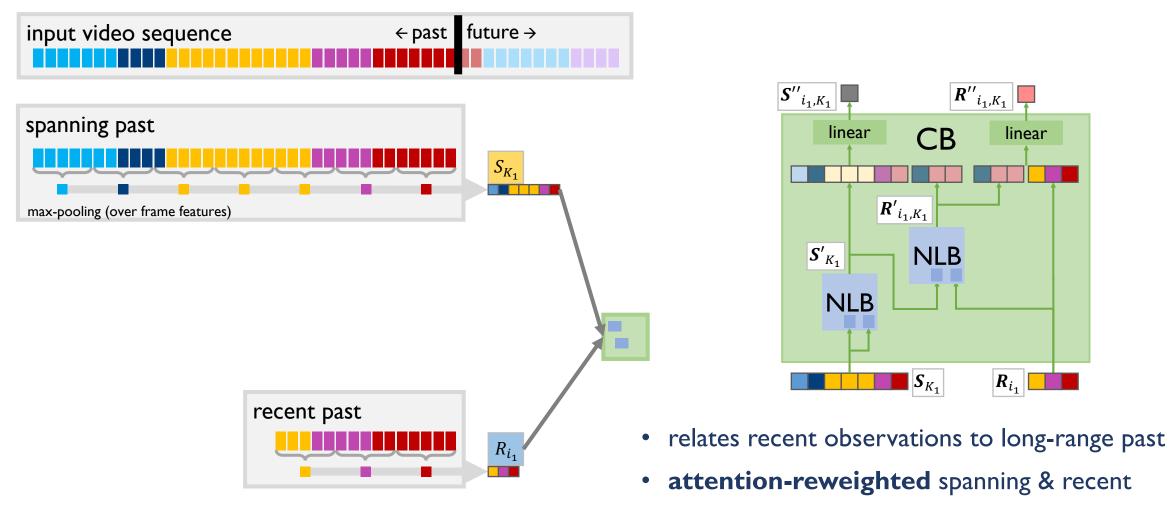
Intro to Action Segmentation, ATLAS Tutorial @ ECCV

Temporal Modelling

- Recurrent Neural Networks (RNNs)
 - Bi-directional GRUs [a], [b]
- Temporal Convolutional Networks (TCNs)
 - Encoder-Decoder [c],[d]
 - Multi-stage TCNs [e],[f]
- Attention & Transformer Architectures
 - Temporal Aggregates [g]
 - ASFormer[h]
 - UVAST[I]

[a] Singh et al, CVPR'16
[b] Richard et al, CVPR'17
[c] Lea et al, CVPR'17
[d] Lei et al, CVPR'18
[e] Farha et al, CVPR '19
[f] Singhania et al, arxiv'21
[g] Sener et al, ECCV'20
[h] Yi et al, BMVC'21
[l] Behrmann, ECCV'22

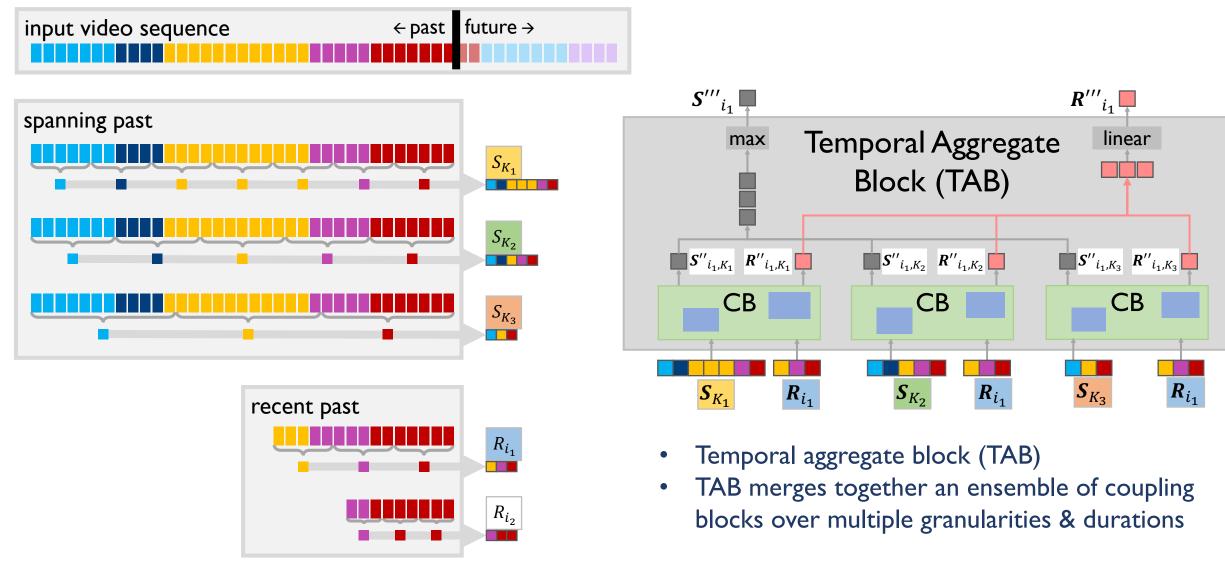
Temporal Aggregates: Coupling Block (CB)



outputs

Sener, Singhania & Yao. Temporal Aggregate Representations for Long-Range Video Understanding. *ECCV*'20 Intro to Action Segmentation, ATLAS Tutorial @ ECCV

Model – Temporal Aggregate Block (TAB)



Sener, Singhania & Yao. Temporal Aggregate Representations for Long-Range Video Understanding. ECCV'20 Intro to Action Segmentation, ATLAS Tutorial @ ECCV

Model – Ensemble of TABs



Sener, Singhania & Yao. Temporal Aggregate Representations for Long-Range Video Understanding. ECCV'20 Intro to Action Segmentation, ATLAS Tutorial @ ECCV

<u>ASFormer</u>

- encoder + several decoders for iterative refinement.
- MS-TCN-like architecture each dilated convolutional layer replaced with a self-attention block with instance normalization

<u>UVAST</u>

- similar encoder to ASFormer
- decodes action segments auto-regressively
- state-of-the-art in Edit & FI-score, indicating less over-segmentation, lower MoF indicating low accuracy at the boundaries.

- Hidden Markov Model
 - Richard et al. CVPR'18 Li and Todorovic CVPR'20 Kukleva et al. CVPR'19 Li and Todorovic CVPR'21
- Generalized Mallows Model
 Sener and Yao CVPR'18
- Dynamic Time Warping

Chang et al. CVPR'19 Ding and Yao ECCV'22

Table of Contents

<u>I.Task</u>

- Definition
- Datasets
- Forms of Supervision
- Evaluation Measures

2. Core Techniques

• Frame-wise

Representation

- Temporal Modelling
- Sequential Modelling

3. SoTA Trends

- Fully Supervised
- Weakly-Supervised
- Unsupervised
- Semi-Supervised

Fully Supervised

Methods improving representations: Singh et al. CVPR'16 Lea et al. ECCV'16 Sener et al. ECCV'20 Temporal Convolutional Networks based solutions ED-TCN - Lea et al, CVPR'17 MS-TCN - Farha et al, CVPR'19 C2F-TCN - Singhania et al, arxiv'21

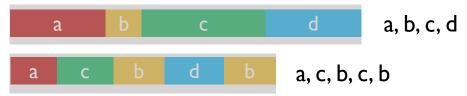
Transformers

ASFormer - Yi et al, BMVC'21 UVAST - Behrmann, ECCV'22 Improving existing architectures & outputs

MTDA + MS-TCN – Chen et al. CVPR'20 BCN + MS-TCN - Wang et al. ECCV'20 FIFA + UVAST - Souri et al. GCPR'21

Weak Supervision – action labels

Transcripts: Ordered List of Actions



Two-Stage approaches refine segments iteratively.

```
HMMs - Kuehne et al. CVIU'17
RNNs - Richard et al. CVPR'17
TCNs - Ding et al. CVPR'18
```

Single-stage approaches directly learn segmentation. ECTC - Huang et al. ECCV'16 NN-Viterbi - Richard et al. CVPR'16 D3TW - Chang et al. CVPR'19 CDFL - Li et al. ICCV'19 Transcripts: Set of Actions



A set of actions, w/out temporal boundaries, order. This type of labelling can arise in the form of meta-tags e.g., from video sharing platforms

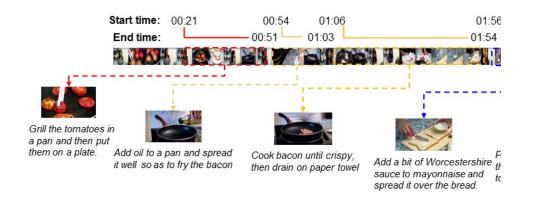
Richard et al. CVPR'18 Fayyaz et al. CVPR'20 Li et al. CVPR'20 Li et al. CVPR'21

Weak Supervision

Single-Frame Supervision

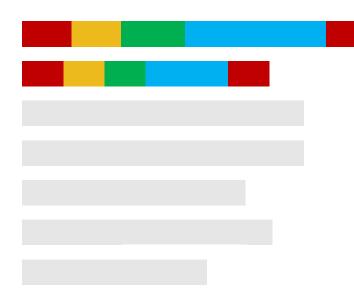
- Single timestamps for each / some actions to reduce annotation effort
- Provides more info than action transcripts or sets, stronger performance
 - Monotonic class probability Li et al. CVPR'21
 - Expectation-Maximization (EM) Rahaman et al. ECCV'22

Narrations & Subtitles



- Text data from scripts, subtitles, or narrations
- Assumes temporal alignment of videos & text

Fully labelled video for some videos of training set.



A subset of dense annotations provides more information than singleframe supervision on the entire dataset [3]

		Breakfast	50Salads	GTEA
Full-supervision	MSTCN'19 [1]	65.I	78.2	76.6
Single timestamp	Timestamp'21 [2]	64. I	75.6	66.4
Semi-supervised	SemiTAS'22 (%50) [3]	63.9	78.8	77.9

With 40% labelled data, ICC[4] performs comparably to the fullysupervised counterparts

		Breakfast	50Salads	GTEA
Full-supervision	MSTCN'19 [1]	65.I	78.2	76.6
Semi-supervised	ICC'22 (%40) [4]	71.1	78.0	78.4

[1] Farha, Y.A., Gall, J.: Ms-tcn: Multi-stage temporal convolutional network for action segmentation. CVPR'19

[2] Li, Z., Abu Farha, Y., Gall, J.: Temporal action segmentation from timestamp supervision. CVPR'21

[3] G. Ding and A. Yao, Leveraging action affinity and continuity for semi-supervised temporal action segmentation. ECCV'22

[4] D. Singhania, R. Rahaman, and A. Yao, Iterative contrast-classify for semi-supervised temporal action segmentation. AAAI'22

Conclusion & Outlook

- Problem formulation
 - frame-wise action labels to event-based processing?
- End-to-end learning
 - How to design? Do we even need it?
 - Integrated sequence modelling?
- New architectures
 - Transformers, graphs, etc.
- Shifting towards online video streams
 - Rethinking
- Minimizing labelling efforts

• Survey paper:

Temporal Action Segmentation: An Analysis of Modern Technique,

Guodong Ding, Fadime Sener and Angela Yao. 2022

Work Compilation:
 Awesome Temporal Action Segmentation,
 Curated list of TAS works on GitHub.

